Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36556370

RESUMO

The Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) is a major citrus pest spread around the world. It is also a vector of the bacterium 'Candidatus Liberibacter asiaticus', considered the cause of the fatal citrus disease huanglongbing (HLB). Insect ryanodine receptors (RyRs) are the primary target sites of diamide insecticides. In this study, full-length RyR cDNA from D. citri (named DcRyR) was isolated and identified. The 15,393 bp long open reading frame of DcRyR encoded a 5130 amino acid protein with a calculated molecular weight of 580,830 kDa. This protein had a high sequence identity (76-79%) with other insect homologs and a low sequence identity (43-46%) with mammals. An MIR domain, two RIH domains, three SPRY domains, four RyR repeat domains, an RIH-associated domain at the N-terminus, two consensus calcium-binding EF-hands, and six transmembrane domains were among the characteristics that DcRyR shared with insect and vertebrate RyRs. In expression analysis, the DcRyR gene displayed transcript abundance in all tissues and developmental stages as well as gene-differential and stage-specific patterns. In addition, diagnostic PCR experiments revealed that DcRyR had three potential alternative splice variants and that splicing events might have contributed to the various functions of DcRyR. However, diamide resistance-related amino acid residue mutations I4790M/K and G4946E were not found in DcRyR. These results can serve as the basis for further investigation into the target-based diamide pesticide resistance of D. citri.

2.
Front Plant Sci ; 11: 600704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488646

RESUMO

Anthocyanins spatiotemporally accumulate in certain tissues of particular species in the banana plant, and MYB transcription factors (TFs) serve as their primary regulators. However, the precise regulatory mechanism in banana remains to be determined. Here, we report the identification and characterization of MaMYB4, an R2R3-MYB repressor TF, characterized by the presence of EAR (ethylene-responsive element binding factor-associated amphiphilic repression) and TLLLFR motifs. MaMYB4 expression was induced by the accumulation of anthocyanins. Transgenic banana plants overexpressing MaMYB4 displayed a significant reduction in anthocyanin compared to wild type. Consistent with the above results, metabolome results showed that there was a decrease in all three identified cyanidins and one delphinidin, the main anthocyanins that determine the color of banana leaves, whereas both transcriptome and reverse transcription-quantitative polymerase chain reaction analysis showed that many key anthocyanin synthesis structural genes and TF regulators were downregulated in MaMYB4 overexpressors. Furthermore, dual-luciferase assays showed that MaMYB4 was able to bind to the CHS, ANS, DFR, and bHLH promoters, leading to inhibition of their expression. Yeast two-hybrid analysis verified that MaMYB4 did not interact with bHLH, which ruled out the possibility that MaMYB4 could be incorporated into the MYB-bHLH-WD40 complex. Our results indicated that MaMYB4 acts as a repressor of anthocyanin biosynthesis in banana, likely due to a two-level repression mechanism that consists of reduced expression of anthocyanin synthesis structural genes and the parallel downregulation of bHLH to interfere with the proper assembly of the MYB-bHLH-WD40 activation complex. To the best of our knowledge, this is the first MYB TF that regulates anthocyanin synthesis that was identified by genetic methods in bananas, which will be helpful for manipulating anthocyanin coloration in banana programs in the future.

3.
Front Plant Sci ; 9: 282, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568304

RESUMO

Banana is an important tropical fruit with high economic value. One of the main cultivars ('Cavendish') is susceptible to low temperatures, while another closely related specie ('Dajiao') has considerably higher cold tolerance. We previously reported that some membrane proteins appear to be involved in the cold tolerance of Dajiao bananas via an antioxidation mechanism. To investigate the early cold stress response of Dajiao, here we applied comparative membrane proteomics analysis for both cold-sensitive Cavendish and cold-tolerant Dajiao bananas subjected to cold stress at 10°C for 0, 3, and 6 h. A total of 2,333 and 1,834 proteins were identified in Cavendish and Dajiao, respectively. Subsequent bioinformatics analyses showed that 692 Cavendish proteins and 524 Dajiao proteins were predicted to be membrane proteins, of which 82 and 137 differentially abundant membrane proteins (DAMPs) were found in Cavendish and Dajiao, respectively. Interestingly, the number of DAMPs with increased abundance following 3 h of cold treatment in Dajiao (80) was seven times more than that in Cavendish (11). Gene ontology molecular function analysis of DAMPs for Cavendish and Dajiao indicated that they belong to eight categories including hydrolase activity, binding, transporter activity, antioxidant activity, etc., but the number in Dajiao is twice that in Cavendish. Strikingly, we found peroxidases (PODs) and aquaporins among the protein groups whose abundance was significantly increased after 3 h of cold treatment in Dajiao. Some of the PODs and aquaporins were verified by reverse-transcription PCR, multiple reaction monitoring, and green fluorescent protein-based subcellular localization analysis, demonstrating that the global membrane proteomics data are reliable. By combining the physiological and biochemical data, we found that membrane-bound Peroxidase 52 and Peroxidase P7, and aquaporins (MaPIP1;1, MaPIP1;2, MaPIP2;4, MaPIP2;6, MaTIP1;3) are mainly involved in decreased lipid peroxidation and maintaining leaf cell water potential, which appear to be the key cellular adaptations contributing to the cold tolerance of Dajiao. This membrane proteomics study provides new insights into cold stress tolerance mechanisms of banana, toward potential applications for ultimate genetic improvement of cold tolerance in banana.

4.
Sci Rep ; 7: 40852, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28106078

RESUMO

Low temperature is one of the key environmental stresses, which greatly affects global banana production. However, little is known about the global phosphoproteomes in Musa spp. and their regulatory roles in response to cold stress. In this study, we conducted a comparative phosphoproteomic profiling of cold-sensitive Cavendish Banana and relatively cold tolerant Dajiao under cold stress. Phosphopeptide abundances of five phosphoproteins involved in MKK2 interaction network, including MKK2, HY5, CaSR, STN7 and kinesin-like protein, show a remarkable difference between Cavendish Banana and Dajiao in response to cold stress. Western blotting of MKK2 protein and its T31 phosphorylated peptide verified the phosphoproteomic results of increased T31 phosphopeptide abundance with decreased MKK2 abundance in Daojiao for a time course of cold stress. Meanwhile increased expression of MKK2 with no detectable T31 phosphorylation was found in Cavendish Banana. These results suggest that the MKK2 pathway in Dajiao, along with other cold-specific phosphoproteins, appears to be associated with the molecular mechanisms of high tolerance to cold stress in Dajiao. The results also provide new evidence that the signaling pathway of cellular MKK2 phosphorylation plays an important role in abiotic stress tolerance that likely serves as a universal plant cold tolerance mechanism.


Assuntos
Temperatura Baixa , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Musa/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Proteômica , Adaptação Biológica , Motivos de Aminoácidos , Sequência de Aminoácidos , Fenótipo , Fosfopeptídeos/metabolismo , Fosforilação , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos , Estresse Fisiológico
5.
Appl Microbiol Biotechnol ; 99(17): 7189-207, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26129952

RESUMO

Conidial germination is a crucial step of the soilborne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), a most important lethal disease of banana. In this study, a total of 3659 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic approach, of which 1009 were differentially expressed during conidial germination of the fungus at 0, 3, 7, and 11 h. Functional classification and bioinformatics analysis revealed that the majority of the differentially expressed proteins are involved in six metabolic pathways. Particularly, all differential proteins involved in the ergosterol biosynthesis pathway were significantly upregulated, indicating the importance of the ergosterol biosynthesis pathway to the conidial germination of Foc TR4. Quantitative RT-PCR, western blotting, and in vitro growth inhibition assay by several categories of fungicides on the Foc TR4 were used to validate the proteomics results. Four enzymes, C-24 sterol methyltransferase (ERG6), cytochrome P450 lanosterol C-14α-demethylase (EGR11), hydroxymethylglutaryl-CoA synthase (ERG13), and C-4 sterol methyl oxidase (ERG25), in the ergosterol biosynthesis pathway were identified and verified, and they hold great promise as new targets for effective inhibition of Foc TR4 early growth in controlling Fusarium wilt of banana. To the best of our knowledge, this report represents the first comprehensive study on proteomics profiling of conidia germination in Foc TR4. It provides new insights into a better understanding of the developmental processes of Foc TR4 spores. More importantly, by host plant-induced gene silencing (HIGS) technology, the new targets reported in this work allow us to develop novel transgenic banana leading to high protection from Fusarium wilt and to explore more effective antifungal drugs against either individual or multiple target proteins of Foc TR4.


Assuntos
Vias Biossintéticas/genética , Ergosterol/biossíntese , Fusarium/química , Fusarium/crescimento & desenvolvimento , Proteoma/análise , Esporos Fúngicos/química , Esporos Fúngicos/crescimento & desenvolvimento , Western Blotting , Fusarium/genética , Perfilação da Expressão Gênica , Musa/microbiologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real
6.
PLoS One ; 10(6): e0126973, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26046530

RESUMO

Root samples of 'Sanhu' red tangerine trees infected with and without Candidatus Liberibacter asiaticus (CLas) were collected at 50 days post inoculation and subjected to RNA-sequencing and isobaric tags for relative and absolute quantification (iTRAQ) to profile the differentially expressed genes (DEGs) and proteins (DEPs), respectively. Quantitative real-time PCR was subsequently used to confirm the expression of 16 selected DEGs. Results showed that a total of 3956 genes and 78 proteins were differentially regulated by HLB-infection. Among the most highly up-regulated DEPs were sperm specific protein 411, copper ion binding protein, germin-like proteins, subtilisin-like proteins and serine carboxypeptidase-like 40 proteins whose transcript levels were concomitantly up-regulated as shown by RNA-seq data. Comparison between our results and those of the previously reported showed that known HLB-modulated biological pathways including cell-wall modification, protease-involved protein degradation, carbohydrate metabolism, hormone synthesis and signaling, transcription activities, and stress responses were similarly regulated by HLB infection but different or root-specific changes did exist. The root unique changes included the down-regulation in genes of ubiquitin-dependent protein degradation pathway, secondary metabolism, cytochrome P450s, UDP-glucosyl transferases and pentatricopeptide repeat containing proteins. Notably, nutrient absorption was impaired by HLB-infection as the expression of the genes involved in Fe, Zn, N and P adsorption and transportation were significantly changed. HLB-infection induced some cellular defense responses but simultaneously reduced the biosynthesis of the three major classes of secondary metabolites, many of which are known to have anti-pathogen activities. Genes involved in callose deposition were up-regulated whereas those involved in callose degradation were also up-regulated, indicating that the sieve tube elements in roots were hanging on the balance of life and death at this stage. In addition, signs of carbohydrate starvation were already eminent in roots at this stage. Other interesting genes and pathways that were changed by HLB-infection were also discussed based on our findings.


Assuntos
Raízes de Plantas/microbiologia , Proteoma/análise , Proteômica , Rhizobiaceae/fisiologia , Transcriptoma , Metabolismo dos Carboidratos , Cromatografia Líquida de Alta Pressão , Citrus/genética , Citrus/metabolismo , Regulação para Baixo , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Espectrometria de Massas por Ionização por Electrospray , Regulação para Cima
7.
BMC Genomics ; 16: 446, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26059100

RESUMO

BACKGROUND: Banana and plantain (Musa spp.) comprise an important part of diets for millions of people around the globe. Low temperature is one of the key environmental stresses which greatly affects the global banana production. To understand the molecular mechanism of the cold-tolerance in plantain we used RNA-Seq based comparative transcriptomics analyses for both cold-sensitive banana and cold-tolerant plantain subjected to the cold stress for 0, 3 and 6 h. RESULTS: The cold-response genes at early stage are identified and grouped in both species by GO analysis. The results show that 10 and 68 differentially expressed genes (DEGs) are identified for 3 and 6 h of cold stress respectively in plantain, while 40 and 238 DEGs are identified respectively in banana. GO classification analyses show that the majority of DEGs identified in both banana and plantain belong to 11 categories including regulation of transcription, response to stress signal transduction, etc. A similar profile for 28 DEGs was found in both banana and plantain for 6 h of cold stress, suggesting both share some common adaptation processes in response to cold stress. There are 17 DEGs found uniquely in cold-tolerance plantain, which were involved in signal transduction, abiotic stress, copper ion equilibrium, photosynthesis and photorespiration, sugar stimulation, protein modifications etc. Twelve early responsive genes including ICE1 and MYBS3 were selected and further assessed and confirmed by qPCR in the extended time course experiments (0, 3, 6, 24 and 48 h), which revealed significant expression difference of key genes in response to cold stress, especially ICE1 and MYBS3 between cold-sensitive banana and cold-tolerant plantain. CONCLUSIONS: We found that the cold-tolerance pathway appears selectively activated by regulation of ICE1 and MYBS3 expression in plantain under different stages of cold stress. We conclude that the rapid activation and selective induction of ICE1 and MYBS3 cold tolerance pathways in plantain, along with expression of other cold-specific genes, may be one of the main reasons that plantain has higher cold resistance than banana.


Assuntos
Perfilação da Expressão Gênica/métodos , Musa/classificação , Musa/genética , Proteínas de Plantas/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Análise de Sequência de RNA/métodos , Estresse Fisiológico
8.
Mol Cell Proteomics ; 11(12): 1853-69, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22982374

RESUMO

Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by proteomic analysis.


Assuntos
Antioxidantes/metabolismo , Temperatura Baixa , Musa/metabolismo , Proteínas de Plantas/análise , Plântula/metabolismo , Catalase/análise , Sequestradores de Radicais Livres , Regulação da Expressão Gênica , Oxirredução , Oxilipinas/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Proteoma/análise , Espécies Reativas de Oxigênio , Estresse Fisiológico , Superóxido Dismutase/análise
9.
BMC Genomics ; 13: 374, 2012 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-22863187

RESUMO

BACKGROUND: Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is considered the most lethal disease of Cavendish bananas in the world. The disease can be managed in the field by planting resistant Cavendish plants generated by somaclonal variation. However, little information is available on the genetic basis of plant resistance to Foc TR4. To a better understand the defense response of resistant banana plants to the Fusarium wilt pathogen, the transcriptome profiles in roots of resistant and susceptible Cavendish banana challenged with Foc TR4 were compared. RESULTS: RNA-seq analysis generated more than 103 million 90-bp clean pair end (PE) reads, which were assembled into 88,161 unigenes (mean size = 554 bp). Based on sequence similarity searches, 61,706 (69.99%) genes were identified, among which 21,273 and 50,410 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) mapped 33,243 (37.71%) unigenes to 119 KEGG pathways. A total of 5,008 genes were assigned to plant-pathogen interactions, including disease defense and signal transduction. Digital gene expression (DGE) analysis revealed large differences in the transcriptome profiles of the Foc TR4-resistant somaclonal variant and its susceptible wild-type. Expression patterns of genes involved in pathogen-associated molecular pattern (PAMP) recognition, activation of effector-triggered immunity (ETI), ion influx, and biosynthesis of hormones as well as pathogenesis-related (PR) genes, transcription factors, signaling/regulatory genes, cell wall modification genes and genes with other functions were analyzed and compared. The results indicated that basal defense mechanisms are involved in the recognition of PAMPs, and that high levels of defense-related transcripts may contribute to Foc TR4 resistance in banana. CONCLUSIONS: This study generated a substantial amount of banana transcript sequences and compared the defense responses against Foc TR4 between resistant and susceptible Cavendish bananas. The results contribute to the identification of candidate genes related to plant resistance in a non-model organism, banana, and help to improve the current understanding of host-pathogen interactions.


Assuntos
Fusarium/patogenicidade , Perfilação da Expressão Gênica/métodos , Musa/microbiologia , Raízes de Plantas/microbiologia , Doenças das Plantas/microbiologia
10.
Fen Zi Xi Bao Sheng Wu Xue Bao ; 39(6): 563-7, 2006 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-17348209

RESUMO

Excised shoot-tips produced from banana plants belonging to cv. Guangdong No.1 (ABB group) were cryopreserved successfully by vitrification using the PVS2 solution. Ultrastructural of banana shoot-tips cells was also observed by using electron micryoscopy (TEM). The results showed that the plasmolysis became more and more severe during the course of dehydration. Cells were mainly damaged during the freezing and thawing process. Most cell protoplasts condensed, and cell organelles, cell membranes and nucleus envelopes were lethally injured after cryopreservation. But only a few cells located in the meristematic dome arose reversible process although their structures were varied. They could survive and regenerate plantlets after freezing conservation.


Assuntos
Criopreservação/métodos , Musa/ultraestrutura , Brotos de Planta/ultraestrutura , Microscopia Eletrônica de Transmissão , Musa/citologia , Brotos de Planta/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...